4 research outputs found

    Best Practices in Cancer Nanotechnology: Perspective from NCI Nanotechnology Alliance

    Get PDF
    Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities which are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems which could not be effectively solved in the past and include overcoming formulation issues, multi-drug-resistance phenomenon and penetrating cellular barriers that may limit device accessibility to intended targets such as the blood-brain-barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise towards new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics

    Best Practices in Cancer Nanotechnology: Perspective from NCI Nanotechnology Alliance

    Get PDF
    Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities which are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems which could not be effectively solved in the past and include overcoming formulation issues, multi-drug-resistance phenomenon and penetrating cellular barriers that may limit device accessibility to intended targets such as the blood-brain-barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise towards new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics

    From micro to nano: evolution and impact of drug delivery in treating disease

    No full text
    Over the past 50 years, drug delivery breakthroughs have enabled the approval of several important medicines. Often, this path starts with innovation from academic collaborations amongst biologists, chemists, and engineers, followed by the formation of a start-up company driving clinical translation and approval. An early wave featured injectable (i.e., intramuscular, subcutaneous) biodegradable polymeric microspheres to control drug release profiles for peptides and small molecules (e.g., Lupron Depot®, Risperdal Consta®). With these early successes for microspheres, research shifted to exploring systemic delivery by intravenous injection, which required smaller particle sizes and modified surface properties (e.g., PEGylation) to enable long circulation times. These new innovations resulted in the nanoparticle medicines Doxil® and Abraxane®, designed to improve the therapeutic index of cytotoxic cancer agents by decreasing systemic exposure and delivering more drug to tumors. Very recently, the first siRNA lipid nanoparticle medicine, Patisiran (Onpattro®), was approved for treating hereditary transthyretin-mediated amyloidosis. In this inspirational note, we will highlight the technological evolution of drug delivery from micro- to nano-, citing some of the approved medicines demonstrating the significant impact of the drug delivery field in treating many diseases
    corecore